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and provides as its solution the electric field at the aperture, in addi-

tion to the various parameters of interest such as coupling coefficient,

junction impedance, etc.
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AGeneralized Loc king Equation for Oscillators

JOHNP. QUINE

Absfract—Locking equations are derived which account for non-

sinusoidal device waveforms. Locking bandwidth is related to Q

values and device voltage amplitudes. Effective Q values arecalcu-

lated for cavities having tuned and untuned harmonics.
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Adler [l]hasderived arelation between thereflection phase shift

and the gain of locked oscillators basedon the assumption of a sinus-

oidal device voltage waveform. However, to achieve high efficiency

in present-day solid-state microwave power sources, it is required in

many cases that the device current and voltage waveforms contain

strong harmonic components. In these cases, Adler’s equation does

not apply. Inthis short paper, the derivation of a generalized locking

equation is presented which accounts for the presence of strong har-

monic components, and allows the prediction of the locking band-

width for an arbitrary cavity configuration and for arbitrary device

waveforms.

Asingle-valued static Acharacteristic is assumed. Forthis case,

the area described by the instantaneous operating point as it moves

along the i–v curve during one fundamental period is zero [2]. Thus

J

T
idu = O, (1)

0

where T=l/~=2r/ti isthefundamental periodcf oscillation, and

.
v = ~ V% sin (2rs7rft +a.) (2)

71-1

i = ~, In sin (2mrjt + O.) (3)

.
da = ~ti@Vn COS(2nmjt+a.)dt. (4)

rl=l

Performing the integration iudicated by (1) yields Groszkowski’s

result [2]:

(5)

Equation (5) states that the total reactive power flow is zero, and

can be expressed as
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Ytn toa match-terminated transmission line of characteristic admittance

G., and that an applied locking power represented by a generator of
~ — a“

G“ _ bfl Gn t i,
OSCILLATOR

constant current i.=<8PnGn results in a wave a,. incident on the

device andareflected wave bm. The admittance I’1. looking from the

device can be determined by considering bm to be incident on the load
bn-o”

[1
m-l

Yln = Gn—
bn+an ‘Gn ____

and an reflected from the load. Equation (6) can therefore be writ-
rn+[ ten as

1:- I
Gin = Gn

l+2rn [OsO” +1:

21”s108”
B]” : Gn

l+2rfl CosOn+ r;

Fig. 1. Derivation of admittance I’z..

~ nE.zBn = O (6)
n= 1

where Em= I v./ VI I and B. is the susceptance presented to the device

by the cavity at the nth harmonic frequency n~. The dual relation

~ nHn’X. = O (7)
TI=I

can also be derived where I H. I = I In/Ii I and X. is the reactance

presented to the device by the cavity.

Equation (6) or (7) defines the general resonance condition that

must be satisfied when any linear or nonlinear, active or passive, de-

vice, represented by a ‘(resistive” single-valued i–v characteristic

interacts with a cavity characterized by the susceptances B.. For a

linear device, the only possible solution is for each B. to be zero. On

the other hand, for a nonlinear device, the condition B.= O is a per-

missible solution, but not a necessary condition in general. With

harmonic voltages present, the nonlinear device, although represented

by a nominally resistive i–rJ characteristic, can appear as a sus-

ceptance, and in this case the B. are not required to be individually

zero in general.

The-origin of these susceptances can be more clearly understood

by considering the device to be driven directly and simultaneously by

hypothetical zero-impedance generators having voltages given by (2).

If all the an are made equal to + rr/2, then (2) shows that the device

voltage waveform is symmetrical about t = O. In this case, the result-

ing current waveform for the nonlinear (and linear) device must also

be symmetrical and 1. must be in phase (or 180° out of phase) with

V~; under these conditions, the device is “resistive” at each frequency.

On the other hand, if any of the an are not made equal to ~ rr/2, and

if the device is nonlinear, the resulting nonsymmetrical voltage wave-

form across the device can cause 1. to have any phase with respect to

V.; under these conditions, the device can appear ‘(susceptive” at the

frequency n~.

In the case of an actual oscillator or amplifier, the cavity admit-

tances establish the phase between V. and In, the operating point and

free-running frequency of the oscillator (or center frequency of the

amplifier) adjusting in order to satisfy (6). If all the B~ are adjusted

to be zero at a particular operating frequency, the arguments pre-

sented in the preceding paragraph show that the voltage waveform

across the device must be symmetrical, e.g., square or half-sinusoidal.

It was shown previously that such waveforms can lead to enhanced

efficiency [3], [4]. As the operating frequency is changed by changing

the frequency of an applied signal, it is clear that the B. may no

longer have zero values, and the voltage waveforms may no longer

be symmetrical.

To derive a locking equation, it is noted that B. in (6) comprises

the actual “cold “-cavity susceptance B.. plus the susceptimce Bt~

associated with a locking signal that may be applied at any or all of

the harmonic frequencies nf [5]. Fig. 1 shows how Bz. can be calcu-

lated. It is assumed that at each frequency Zj the device is connected

where rm and & are the magnitude and the phase of the complex reflec-

tion gain experienced by a locking signal applied at frequency nf.

If a locking signal is applied only at the fundamental frequency f,
and if this signal is small (rl>>l ), then (8) reduces to

(9)

By equating B,, to the susceptance of a single-tuned LC cavity,

and by neglecting the harmonic voltages, (9) reduces to a form equiv-

alent to that of Adler. However, the two results differ by a factor of

two, as was explained previously [5], [6].

It can be shown that (8) also applies for stable reflection ampli-

fiers. Thus the reflection phase shift i3ncan be calculated for a specified

reflection gain rc for a stable amplifier or for a locked oscillator.

The above results can be applied to specific cavity configurations,

CASE I (UNTUNED HARMONICS)

In this case, the cavity comprises a frequency-independent lumped

inductance L and capacitance C in parallel. The cold-cavity suscep-

tance B.. is given by

‘Cn=2“’’4;-$1
(lo)

where f ~= 1 /(2~ ~LC). After employing (1 O) into (9), one can obtain

the free-running frequency ff by setting r, equal to infinity. The re-

sult is

which can be manipulated to obtain the form

f, 2

()T . (11)

Equation (11) was also derived by van der Pol [7], [8] from the dif-

ferential equation for the LC oscillator. Thus for the special case of a

simple L C oscillator, it has been shown here that Groszkowski’s more

general approach leads to the same result obtained by van der Pol.

Equation (11) shows that f~ can be substantially less than ~iI depend-

ing on the harmonic content, as was discussed again recently [8], [9].

Fig. 2 shows values of sin O, calculated from (9) using the value of

B,. given by (10), and assuming a half-sinusoidal voltage waveform

as an approximation for a limited space-charge accllmulation (LSA)

relaxation-mode oscillator [8]. I o this case, only even harmonics

occur, and the harmonic voltages relative to that of the fundamental

are 0.424, 0.0849, 0.0364, 0.0202, and 0.0129 for n =2, 4, 6, 8, and 10,

respectively. The parameter N in Fig, 2 indicates the highest har-

monic included. The locking bandwidth corresponds to I sin (3I] <1,

and the data show that the presence of the harmonics can cause ,a

substantial reduction in bandwidth. The data also show that the

bandwidth reduction obtained when several harmonics are present is

not appreciably greater than when only the second harmonic is pres-

ent. The shifts in center frequencies correspond to the values calcu-

lated from (11).
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Fig. 2. Bandwidth and frequency shift of .LC circuit.

CASEI1 (TUNED HARMONICS)

A hypothetical cavity can be considered comprising a frequency-

independent capacitance Ctuned ateach harmonic by an inductance

-L which is somehow made different for each harmonic. For this

model, if~isthe fundamental frequency, then

(12)

wheref~ is the resonant frequency for the nth harmonic. If ~.=ti~l,

then (12) showsthatB.~ =nB.I =2n7j1CW/jl–.f1/j) =nQIG1~/~1–.fI/~).

Under these conditions, B,* is zero at midband for all harmonics.

Forthis hypothetical cavity, therefore, (9) becomes

It is notedl that no detuning occurs, i.e., sin 01= O at ~ =jl. From the

form of (13), itisseen that theeffective Qvalueis given by

[ 1Qeff=Q1 l+~n2En2 .
VL=2

(14)

Assuming only the fundamental and the second harmonic of a half-

sine-wave spectrum are present, the value of Qe~fk L72Q1. If the
fourth harmonic ispresent aswellas thesecond, then Q.ffiS 1.83Q1.

The results of this short paper, although based on an idealized

model, have been found useful in explaining the narrow-locking band-

widths obtained with LSA relaxation-mode oscillators which have

approximately half-sine-wave voltage waveforms [10]. The narrow

bandwidth obtained with TRAPATT oscillators having approxi-

mately square current waveforms can also be understood on the

same basis.
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Comment on “Varactor Q Measurement”

EUGENE W. SARD AND JAMES M. ROE

In the above letter,l and in a previous one by Houlding [1] it has

been stated that less than six parameters are sufficient to characterize

a 10SSY two-port network coupling into a varactor junction. It is my

contention, however, that erroneous conclusions can thereby be

drawn as to the varactor’s Q. Specifically, Roe’s method will be

applied to a theoretical varactor and shown to give ambiguous re-

sults, which are attributed to Roe’s use of less than six parameters to

describe the lossy coupling network.

The theoretical varactor chosen is the one considered previously

in [2], with n = ~, d = 1.2 V, total R,s = 1 w and QO’ =10 (the varactor

Q at the matched bias point rJ= O V). Fig. 1 shows three two-port

networks coupling into the varactor j unction to give identical admit-

tance circles with varying bias, corresponding to the values of a = 3, 0,

and —3. There are an infinite nomber of such networks corresponding

to different values of a, the normalized series load reactance when

biased for minimum standing-wave ratio (SWR). Fig. 1 (b) (a= O)

is the same as [2, fig. 10(b)], and is the simplified configuration con-

sidered by Roe. Fig. 1 (a) and (c) are new and are derived from

[2, eqs. (35)-(38)]. The admittance circles are centered on the real

axis, intersecting it at g = 1/9 and 1.

Table I summarizes the calculation of the values of Roe’s Q~ for

the three networks, and Fig. 2 shows Q~ plotted versus C$–v Only the

Q~ points corresponding to the a =0 network fit Roe’s theoretical

curve. Thus, unless one is lucky enough to have a = O when measuring

the varactor Q, the results using Roe’s method will be erroneous. In

contrast there was no theoretical difficulty in handling values of a #O

[2], which used six parameters to characterize the lossy two-port

network coupling into the varactor junction.

Reply by James M, Roe%

That five parameters are sufficient to map the entire output im-

pedance plane of a Iossy two-port network into the input impedance

plane is obvious by inspection. The network of Fig. 11 will map the

R = constant line of the output plane into a circle in the input plane

which can be described by the equation

(R,. – h)’+ (Xi. – k)’ = r’. (1)

In effect, Sard claims that the same circle can be obtained by adding

an arbitrary reactance term X in series to the circle described by

(Rim – k)’+ (Xi, – k’)’ = P (l’)

where

k’=k– X.

It should be clear that one can extend this process to the inclusion of

an arbitrary series resistance term, also. In fact, by alternating be-

tween the input impedance and admittance planes, one can add arbi-

trary elements forever, and still end up with the same circle. I do not

see that six elements represents a special class of transformations.

The ambiguity demonstrated by Sard does not result from the

usage of the simplified transformation, but rather from Sard’s usage

of the same varactor law with the arbitrary series reactance term.

Each of the three examples shown above gives data points which lie

on the same circle, but the range of the arcs covered is different. Of

course, only one arc is observed, and the problem is to establish which

circuit interpretation is correct. Sards’ method [2] begins with the

premise that the varactor law is known (he assumes that the varactor

model determined at a low frequency applies at frequencies orders of

magnitude greater), and determines the appropriate transformation.

My methodl uses the simple transformation, and determines the
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