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SLOT LENGTH = Nx 00352 A
SLOT WIDTH=006251n F=9-26 GHz
DISPLACEMENT FROM CENTER =0-394in

Fig. 6. Variation of coupling coefficient and reflection coefficient with slot length. (), S of a shunt slot in broadwall coupling two identical waveguides;
(2), Su of a shunt slot in broadwall radiating into free space; (3), coupling coefficient of a shunt slot 1n broadwall coupling two identical waveguides.

and provides as its solution the electric field at the aperture, in addi-
tion to the various parameters of interest such as coupling coefficient,
junction impedance, etc.
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A Generalized Locking Equation for Oscillators
JOHN P. QUINE

Abstract—Locking equations are derived which account for non-
sinusoidal device waveforms. Locking bandwidth is related to Q
values and device voltage amplitudes. Effective Q values are calcu-
lated for cavities having tuned and untuned harmonics.
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Adler [1] has derived a relation between the reflection phase shift
and the gain of locked oscillators based on the assumption of a sinus-
oidal device voltage waveform. However, to achieve high efficiency
in present-day solid-state microwave power sources, it is required in
many cases that the device current and voltage waveforms contain
strong harmonic components. In these cases, Adler’s equation does
not apply. In this short paper, the derivation of a generalized locking
equation is presented which accounts for the presence of strong har-
monic components, and allows the prediction of the locking band-
width for an arbitrary cavity configuration and for arbitrary device
waveforms.

A single-valued static +v characteristic is assumed. For this case,
the area described by the instantaneous operating point as it moves
along the +—v curve during one fundamental period is zero [2]. Thus

foTidv -0, )

where T'=1/f =2 /v is the fundamental period of oscillation, and

v = i Va sin Cuxft + an) 2)
n=1

= fj I sin 2uaft + B,) (3)

dv = i nwV, cos Cuxft + on)dt. 4)
n=1

Performing the integration indicated by (1) yields Groszkowski's
result [2]:

2o n) Val] I sin (e ~ 82) = 0. (5)
=1

Equation (5) states that the total reactive power flow is zero, and
can be expressed as
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Fig. 1. Derivation of admittance ¥ipn.
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where E,=| V,./ V;[ and B, is the susceptance presented to the device
by the cavity at the #th harmonic frequency #f. The dual relation

> nH2X, =0 (N
n=1
can also be derived where | H.| = | I./I| and X, is the reactance

presented to the device by the cavity.

Equation (6) or (7) defines the general resonance condition that
must be satisfied when any linear or nonlinear, active or passive, de-
vice, represented by a “resistive” single-valued 4w characteristic
interacts with a cavity characterized by the susceptances B,. For a
linear device, the only possible solution is for each B, to be zero. On
the other hand, for a nonlinear device, the condition B, =0 is a per-
missible solution, but not a necessary condition in general. With
harmonic voltages present, the nonlinear device, although represented
by a nominally resistive 4—v characteristic, can appear as a sus-
ceptance, and in this case the B, are not required to be individually
zero in general,

The origin of these susceptances can be more clearly understood
by considering the device to be driven directly and simultaneously by
hypothetical zero-impedance generators having voltages given by (2).
If all the o, are made equal to +#/2, then (2) shows that the device
voltage waveform is symmetrical about ¢=0. In this case, the result-
ing current waveform for the nonlinear (and linear) device must also
be symmetrical and I, must be in phase (or 180° out of phase) with
Va; under these conditions, the device is “resistive” at each frequency.
On the other hand, if any of the o, are not made equal to +/2, and
if the device is nonlinear, the resulting nonsymmetrical voltage wave-
form across the device can cause I, to have any phase with respect to
Va; under these conditions, the device can appear “susceptive” at the
frequency nf.

In the case of an actual oscillator or amplifier, the cavity admit-
tances establish the phase between 1, and I, the operating point and
free-running frequency of the oscillator (or center frequency of the
amplifier) adjusting in order to satisfy (6). If all the B, are adjusted
to be zero at a particular operating frequency, the arguments pre-
sented in the preceding paragraph show that the voltage waveform
across the device must be symmetrical, e.g., square or half-sinusoidal.
It was shown previously that such waveforms can lead to enhanced
efficiency [3], [4]. As the operating frequency is changed by changing
the frequency of an applied signal, it is clear that the B, may no
longer have zero values, and the voltage waveforms may no longer
be symmetrical.

To derive a locking equation, it is noted that B, in (6) comprises
the actual “cold”-cavity susceptance B, plus the susceptance By,
associated with a locking signal that may be applied at any or all of
the harmonic frequencies nf [5]. Fig. 1 shows how By, can be calcu-
lated. It is assumed that at each frequency nf the device is connected
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to a match-terminated transmission line of characteristic admittance
Gy, and that an applied locking power represented by a generator of
constant current %,=+/8P,G, results in a wave a, incident on the
device and a reflected wave b,. The admittance ¥, locking from the
device can be determined by considering b, to be incident on the load
and @, reflected from the load. Equation (6) can therefore be writ-
ten as

kL 27,Gy, sin 0, had
— . Ey2B., =0 8
,,z=:11+2rnc056n+rn2n +r§ln v ®)

where 7, and 6, are the magnitude and the phase of the complex reflec-
tion gain experienced by a locking signal applied at frequency #f.

If a locking signal is applied only at the fundamental frequency f,
and if this signal is small (#>>1), then (8) reduces to

2G, sin 6 o
L e By — 3 #E, B, ©

71 n=2

By equating By to the susceptance of a single-tuned LC cavity,
and by neglecting the harmonic voltages, (9) reduces to a form equiv-
alent to that of Adler. However, the two results differ by a factor of
two, as was explained previously [5], [6].

It can be shown that (8) also applies for stable reflection ampli-
fiers. Thus the reflection phase shift 6, can be calculated for a specified
reflection gain r, for a stable amplifier or for a locked oscillator.

The above results can be applied to specific cavity configurations.

Cask I (UntuNED HARMONICS)

In this case, the cavity comprises a frequency-independent lumped
inductance L and capacitance C in parallel. The cold-cavity suscep-
tance B., is given by

nf  f
Ben = 21/oC [70 - n—‘}
where fo=1/(27+/LC). After employing (10) into (9), one can obtain
the free-running frequency f; by setting 7, equal to infinity. The re-
sult is

(10)

S > nfy  Jfo
ELAN AR g2 | ML _ 0
fo Egn Jo ”ff:l

which can be manipulated to obtain the form

14> nE?

SN L
<f’) 143 B

n=2

(an

Equation (11) was also derived by van der Pol [7], [8] from the dif-
ferential equation for the LC oscillator. Thus for the special case of a
simple LC oscillator, it has been shown here that Groszkowski’s more
general approach leads to the same result obtained by van der Pol.
Equation (11) shows that f; can be substantially less than f; depend-
ing on the harmonic content, as was discussed again recently [8], [9].

Fig. 2 shows values of sin 6, calculated from (9) using the value of
B given by (10), and assuming a half-sinuscidal voltage waveform
as an approximation for a limited space-charge accumulation (LSA)
relaxation-mode oscillator [8]. In this case, only even harmonics
occur, and the harmonic voltages relative to that of the fundamental
are 0.424, 0.0849, 0.0364, 0.0202, and 0.0129 for#z =2, 4, 6, 8, and 10,
respectively. The parameter NV in Fig. 2 indicates the highest har-
monic included. The locking bandwidth corresponds to }sin 01| <1,
and the data show that the presence of the harmonics can cause a
substantial reduction in bandwidth. The data also show that the
bandwidth reduction obtained when several harmonics are present is
not appreciably greater than when only the second harmonic is pres-
ent. The shifts in center frequencies correspond to the values calcu-
lated from (11).
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Fig. 2. Bandwidth and frequency shift of LC circuit.

Case II (TuneEp HarMoONICS)

A hypothetical cavity can be considered comprising a frequency-
independent capacitance C tuned at each harmonic by an inductance
L, which is somehow made different for each harmonic. For this
model, if f is the fundamental frequency, then

Bew = 21fC [% - '—i:?]

where £, is the resonant frequency for the nth harmonic. If fa=nfy,

then (12) showsthat Ben =0B. =2uxf1C(f/fi —f1/f) =nQiG: (f /L —fi/f).

Under these conditions, B, is zero at midband for all harmonics.
For this hypothetical cavity, therefore, (9) becomes

leﬂ 1+g”2En2:| (]{_1_% .

It is noted that no detuning occurs, i.e., sin 8; =0 at f=f,. From the
form of (13), it is seen that the effective Q value is given by

(12)

13)

sin 6, = —

Q=014+ 3 annz]. (14)

n=2

Assuming only the fundamental and the second harmonic of a half-
sine-wave spectrum are present, the value of Qe is 1.72Q:. If the
fourth harmonic is present as well as the second, then Qest is 1.83Q\.

The results of this short paper, although based on an idealized
model, have been found useful in explaining the narrow-locking band-
widths obtained with LSA relaxation-mode oscillators which have
approximately half-sine-wave voltage waveforms [10]. The narrow
bandwidth obtained with TRAPATT oscillators having approxi-
mately square current waveforms can also be understood on the
same basis.
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Comment on “Varactor Q Measurement”
EUGENE W. SARD axp JAMES M. ROE

In the above letter,! and in a previous one by Houlding [1] it has
been stated that less than six parameters are sufficient to characterize
a lossy two-port network coupling into a varactor junction. It is my
contention, however, that erroneous conclusions can thereby be
drawn as to the varactor's Q. Specifically, Roe’s method will be
applied to a theoretical varactor and shown to give ambiguous re-
sults, which are attributed to Roe’s use of less than six parameters to
describe the lossy coupling network.

The theoretical varactor chosen is the one considered previously
in [2 ], withn =3, ¢=1.2V, total Rs=1Q, and Q¢ =10 (the varactor
Q at the matched bias point v=0 V). Fig. 1 shows three two-port
networks coupling into the varactor junction to give identical admit-
tance circles with varying bias, corresponding to the values of =3, 0,
and —3. There are an infinite number of such networks corresponding
to different values of «, the normalized series load reactance when
biased for minimum standing-wave ratio (SWR). Fig. 1(b) («=0)
is the same as [2, fig. 10(b)], and is the simplified configuration con-
sidered by Roe. Fig. 1(a) and (c) are new and are derived from
[2, egs. (35)-(38)]. The admittance circles are centered on the real
axis, intersecting it at g=1/9 and 1.

Table I summarizes the calculation of the values of Roe’s @ for
the three networks, and Fig. 2 shows Q.. plotted versus ¢ —2. Only the
Qn points corresponding to the a =0 network fit Roe’s theoretical
curve. Thus, unless one is lucky enough to have @ =0 when measuring
the varactor Q, the results using Roe’s method will be erroneous. In
contrast there was no theoretical difficulty in handling values of a0
[2], which used six parameters to characterize the lossy two-port
network coupling into the varactor junction.

Reply by James M, Roe?

That five parameters are sufficient to map the entire output im-
pedance plane of a lossy two-port network into the input impedance
plane is obvious by inspection. The network of Fig. 1! will map the
R =constant line of the output plane into a circle in the input plane
which can be described by the equation

(Rm - h)2 + (Xin - k)z =7 (1)

In effect, Sard claims that the same circle can be obtained by adding
an arbitrary reactance term X in series to the circle described by

(Rin - h)2 + (Xin - k,)z = 1’2 (1,)
where
F=F—X.

1t should be clear that one can extend this process to the inclusion of
an arbitrary series resistance term, also. In fact, by alternating be-
tween the input impedance and admittance planes, one can add arbi-
trary elements forever, and still end up with the same circle. I do not
see that six elements represents a special class of transformations.
The ambiguity demonstrated by Sard does not result from the
usage of the simplified transformation, but rather from Sard’s usage
of the same varactor law with the arbitrary series reactance term.
Each of the three examples shown above gives data points which lie
on the same circle, but the range of the arcs covered is different. Of
course, only one arc is observed, and the problem is to establish which
circuit interpretation is correct. Sards’ method [2] begins with the
premise that the varactor law is known (he assumes that the varactor
model determined at a low frequency applies at frequencies orders of
magnitude greater), and determines the appropriate transformation.
My method! uses the simple transformation, and determines the
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